Diffraction

Revision as of 15:16, 14 April 2023 by David (talk | contribs) (→‎Fraunhofer diffraction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Notes on diffraction for holograms

Theory

Rayleigh-Sommerfeld diffraction theory

Approximations

Fresnel diffraction

Fresnel diffraction can be used for intermediate distances (near-field), when \(\displaystyle F = \frac{a^2}{L \lambda} \geq 1\).

The Fresnel approximation is: \[ E(x,y,z) = \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{ik}{2z} \left[ (x - x')^2 + (y - y')^2 \right]} dx' dy' \] where

  • \(\displaystyle k=2 \pi / \lambda\)

Expanding out terms, we get: \[ \begin{align} E(x,y,z) &= \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{ik}{2z} \left[ (x - x')^2 + (y - y')^2 \right]} dx' dy'\\ &= \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 - 2x x' + x'^2 + y^2 - 2yy' + y'^2 \right]} dx' dy'\\ &= \frac{e^{ikz}}{i \lambda z} e^{\frac{-i\pi}{\lambda z} \left[ x'^2+ y'^2 \right]} \int \int E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 + y^2 \right] } e^{\frac{-i2\pi}{\lambda z} \left[ x x' + yy' \right]} dx' dy' \\ &= \frac{e^{ikz}}{i \lambda z} e^{\frac{-i\pi}{\lambda z} \left[ x'^2+ y'^2 \right]} \mathcal{F} \left\{ E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 + y^2 \right] } \right\}_{p=\frac{x}{\lambda z}, q=\frac{y}{\lambda z}} \end{align} \]

Fraunhofer diffraction

Fraunhofer diffraction is used for far-field holograms, when \(\displaystyle F = \frac{a^2}{L \lambda} \lt \lt 1\).

Resources