\(
\newcommand{\P}[]{\unicode{xB6}}
\newcommand{\AA}[]{\unicode{x212B}}
\newcommand{\empty}[]{\emptyset}
\newcommand{\O}[]{\emptyset}
\newcommand{\Alpha}[]{Α}
\newcommand{\Beta}[]{Β}
\newcommand{\Epsilon}[]{Ε}
\newcommand{\Iota}[]{Ι}
\newcommand{\Kappa}[]{Κ}
\newcommand{\Rho}[]{Ρ}
\newcommand{\Tau}[]{Τ}
\newcommand{\Zeta}[]{Ζ}
\newcommand{\Mu}[]{\unicode{x039C}}
\newcommand{\Chi}[]{Χ}
\newcommand{\Eta}[]{\unicode{x0397}}
\newcommand{\Nu}[]{\unicode{x039D}}
\newcommand{\Omicron}[]{\unicode{x039F}}
\DeclareMathOperator{\sgn}{sgn}
\def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits}
\def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits}
\)
Brief survey on neural network compression techniques.
Pruning
Sensitivity Methods
The idea here is to measure how sensitive each neuron is.
I.e., if you remove the neuron, how will it change the output?
Factorization
Resources