Graph Theory

Revision as of 17:58, 2 March 2020 by David (talk | contribs) (Created page with " ==Trees== {{main | Wikipedia:Tree (graph theory)}} For an unconnected graph G, the following are equivalent * G is connected and acyclic (contains no cycles). * G is acyclic,...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Trees

For an unconnected graph G, the following are equivalent

  • G is connected and acyclic (contains no cycles).
  • G is acyclic, and a simple cycle is formed if any edge is added to G.
  • G is connected, but would become disconnected if any single edge is removed from G.
  • G is connected and the 3-vertex complete graph K3 is not a minor of G.
  • Any two vertices in G can be connected by a unique simple path.