\(
\newcommand{\P}[]{\unicode{xB6}}
\newcommand{\AA}[]{\unicode{x212B}}
\newcommand{\empty}[]{\emptyset}
\newcommand{\O}[]{\emptyset}
\newcommand{\Alpha}[]{Α}
\newcommand{\Beta}[]{Β}
\newcommand{\Epsilon}[]{Ε}
\newcommand{\Iota}[]{Ι}
\newcommand{\Kappa}[]{Κ}
\newcommand{\Rho}[]{Ρ}
\newcommand{\Tau}[]{Τ}
\newcommand{\Zeta}[]{Ζ}
\newcommand{\Mu}[]{\unicode{x039C}}
\newcommand{\Chi}[]{Χ}
\newcommand{\Eta}[]{\unicode{x0397}}
\newcommand{\Nu}[]{\unicode{x039D}}
\newcommand{\Omicron}[]{\unicode{x039F}}
\DeclareMathOperator{\sgn}{sgn}
\def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits}
\def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits}
\)
Loss functions
(Mean) Squared Error
The squared error is:
\(\displaystyle J(\theta) = \sum|h_{\theta}(x^{(i)}) - y^{(i)}|^2\)
If our model is linear regression \(\displaystyle h(x)=w^tx\) then this is convex.
Proof
\(\displaystyle
\begin{aligned}
\nabla_{w} J(w) &= \nabla_{w} \sum (w^tx^{(i)} - y^{(i)})^2\\
&= 2\sum (w^t x^{(i)} - y^{(i)})x \\
\implies \nabla_{w}^2 J(w) &= \nabla 2\sum (w^T x^{(i)} - y^{(i)})x^{(i)}\\
&= 2 \sum x^{(i)}(x^{(i)})^T
\end{aligned}
\)
so the hessian is positive semi-definite