Advanced Calculus
Advanced Calculus as taught in Fitzpatrick's book.
Sequences
Topology
Closed
The folllowing definitions of Closed Sets are equivalent.
- (Order)
- (Sequences) A set \(\displaystyle S\) is clsoed if it contains all its limit points. That is \(\displaystyle \forall \{x_i\} \subseteq S\), \(\displaystyle \{x_i\} \rightarrow x_0 \implies x_0 \in S\).
- (Topology)
Union of infinitely many closed sets can be open.
Intersection of infinitely many open sets can be closed.
Compact
Compactness is a generalization of closed and bounded.
- Definitions
- (Sequence) A set is sequentially compact if for every sequence from the set, there exists a subsequence which converges to a point in the set.
- (Topology) A set is compact if for every covering by infinitely many open sets, there exists a covering by a finite subset of the open sets.
- Notes
- A set is sequentially compact iff it is closed and bounded
Metric Space
Continuity
Definitions of Continuity
The following definitions of Continuity are equivalent.
- (Order) A function \(\displaystyle f\) is continuous at \(\displaystyle x_0\) if for all \(\displaystyle \epsilon\) there exists \(\displaystyle \delta\) such that \(\displaystyle |x - x_0| \leq \delta \implies |f(x) - f(x_0)| \leq \epsilon\)
- (Sequences) A function \(\displaystyle f\) is continuous at \(\displaystyle x_0\) if \(\displaystyle \{x_n\} \rightarrow x_0 \implies \{f(x_n)\} \rightarrow f(x_0)\)
- (Topology) A function \(\displaystyle f\) is continuous at \(\displaystyle x_0\) if for all open sets \(\displaystyle V\) s.t. \(\displaystyle f(x_0) \in V\), \(\displaystyle f^{-1}(V)\) is an open set.
- The preimage of an open set is open.
- Continuous functions map compact sets to compact sets.