Complex Numbers: Difference between revisions

Line 19: Line 19:


Euler's formula states:
Euler's formula states:
<math display="block>
<math display="block">
e^{ix} = \cos(x) + i \sin(x)
e^{ix} = \cos(x) + i \sin(x)
</math>
</math>
Line 25: Line 25:
===Properties===
===Properties===
* The conjugate is <math>e^{-ix}</math> since cosine is symmetric and sine is odd (i.e. <math>sin(-x) = -sin(x)</math>)
* The conjugate is <math>e^{-ix}</math> since cosine is symmetric and sine is odd (i.e. <math>sin(-x) = -sin(x)</math>)
==Euler's Identity==
Euler's Identity states:
<math display="block">
e^{i \pi} + 1 = 0
</math>


==Resources==
==Resources==
* [https://web.stanford.edu/~boyd/ee102/complex-primer.pdf https://web.stanford.edu/~boyd/ee102/complex-primer.pdf] Brief review of complex numbers
* [https://web.stanford.edu/~boyd/ee102/complex-primer.pdf https://web.stanford.edu/~boyd/ee102/complex-primer.pdf] Brief review of complex numbers