Diffusion Models: Difference between revisions
No edit summary |
|||
Line 45: | Line 45: | ||
Classifier guidance uses an image classifier (e.g. clip) to update the noisy input images towards the desired class.<br> | Classifier guidance uses an image classifier (e.g. clip) to update the noisy input images towards the desired class.<br> | ||
Classifier-free guidance<ref name="ho2021classifierfree"> performs inference on the diffusion model to predict the noise with and without the class input, and extrapolating away from the output without noise. | Classifier-free guidance<ref name="ho2021classifierfree"/> performs inference on the diffusion model to predict the noise with and without the class input, and extrapolating away from the output without noise. | ||
==Inversion== | ==Inversion== | ||
Line 54: | Line 54: | ||
==Resources== | ==Resources== | ||
* [https://ai.googleblog.com/2021/07/high-fidelity-image-generation-using.html Google AI Blog High Fidelity Image Generation Using Diffusion Models] - discusses SR3 and CDM | * [https://ai.googleblog.com/2021/07/high-fidelity-image-generation-using.html Google AI Blog High Fidelity Image Generation Using Diffusion Models] - discusses SR3 and CDM | ||
==References== | |||
{{reflist|refs= | |||
<ref name="ho2021classifierfree">Ho, J., & Salimans, T. (2022). Classifier-Free Diffusion Guidance. doi:10.48550/ARXIV.2207.12598 https://arxiv.org/abs/2207.12598</ref> | |||
}} |