Deep Learning: Difference between revisions

Line 1,241: Line 1,241:


===Nonconvex-nonconcave min-max opt===
===Nonconvex-nonconcave min-max opt===
The goal is to find a local saddle point.
;Stability
If we drift away from <math>(x^*,y^*)</math> then the optimization is unstable. 
If we remain close, the optimization is stable even if we never converge. 
;Asymptotic Stability
If dynamics start close enough to <math>\theta^*</math> it remains close. 
If dynamics converges to <math>\theta^*</math>, it is locally asymptotically stable.
Recall <math>\theta_{t+1} = F(\theta_t) = \theta_t + \eta \overrightarrow{g}(\theta_t)</math>.
Jacobian of f: <math>J(\theta) = I + \eta H(\theta)</math>.
where the Hessian is <math>H(\theta) =
\begin{pmatrix}
- \nabla_{xx}^2 f & -\nabla_{xy}^2 f\\
\nabla_{xy}^2 f & \nabla_{yy}^2 f\\
\end{pmatrix}
</math>
(Linear) stability: a fixed point <math>\theta^*</math> is stable if 
<math>| \lambda_{\max}(J(\theta^*)) | = \rho(J(\theta^*)) \leq 1</math>.
Lemma: If linearly stable but <math>\rho(J(\theta^*)) < 1</math> then asymptotic stability.


==Misc==
==Misc==