Numerical Optimization: Difference between revisions
| Line 26: | Line 26: | ||
At each iteration, you solve a constrained optimization subproblem to find the best step <math>p</math>.<br>  | At each iteration, you solve a constrained optimization subproblem to find the best step <math>p</math>.<br>  | ||
<math>\min_{p \in \mathbb{R}^n} m_k(p)</math> such that <math>\Vert p \Vert < \Delta_k </math>.  | <math>\min_{p \in \mathbb{R}^n} m_k(p)</math> such that <math>\Vert p \Vert < \Delta_k </math>.  | ||
===Cauchy Point Algorithms===  | |||
The Cauchy point <math>p_k^c = \tau_k p_k^s</math><br>  | |||
where <math>p_k^s</math> minimizes the linear model in the trust region<br>  | |||
<math> p_k^s = argmin_{p \in \mathbb{R}^n} f_k + g_k^Tp </math> s.t. <math>\Vert p \Vert \leq \Delta_k </math><br>  | |||
and <math>\tau_k</math> minimizes our quadratic model along the line <math>p_k^s</math>:<br>  | |||
<math>\tau_k = argmin_{\tau \geq 0} m_k(\tau p_k^s)</math> s.t. <math>\Vert \tau p_k^s \leq \Delta_k </math><br>  | |||
This can be written explicitly as <math>p_k^s = - \frac{\Delta_k}{\Vert g-K \Vert} g_k</math>  | |||
==Resources==  | ==Resources==  | ||
* [https://link.springer.com/book/10.1007%2F978-0-387-40065-5 Numerical Optimization by Nocedal and Wright (2006)]  | * [https://link.springer.com/book/10.1007%2F978-0-387-40065-5 Numerical Optimization by Nocedal and Wright (2006)]  | ||