Diffraction: Difference between revisions

From David's Wiki
Created page with "Notes on diffraction for holograms ==Theory== ===Rayleigh-Sommerfeld diffraction theory=== ==Approximations== ===Fresnel diffraction=== {{main | Wikipedia: Fresnel diffraction}} Fresnel diffraction can be used for intermediate distances. ===Fraunhofer diffraction=== {{main | Wikipedia: Fraunhofer diffraction}} Fraunhofer diffraction is used for far-field holograms. ==Resources== * Digital holography and wavefront sensing by Ulf Schnars, Claas Falldorf, John Watson, a..."
 
No edit summary
Line 8: Line 8:
{{main | Wikipedia: Fresnel diffraction}}
{{main | Wikipedia: Fresnel diffraction}}
Fresnel diffraction can be used for intermediate distances.
Fresnel diffraction can be used for intermediate distances.
The Fresnel approximation is:
<math display="block">
E(x,y,z) = \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{ik}{2z} \left[ (x - x')^2 + (y - y')^2 \right]} dx' dy'
</math>
where
* <math>k=2 \pi / \lambda</math>
Expanding out terms, we get:
<math display="block">
\begin{align}
E(x,y,z) &= \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{ik}{2z} \left[ (x - x')^2 + (y - y')^2 \right]} dx' dy'\\
&= \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 - 2x x' + x'^2 + y^2 - 2yy' + y'^2 \right]} dx' dy'\\
&= \frac{e^{ikz}}{i \lambda z} e^{\frac{-i\pi}{\lambda z} \left[ x'^2+ y'^2 \right]} \int \int E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 + y^2 \right] } e^{\frac{-i2\pi}{\lambda z} \left[ x x' + yy' \right]} dx' dy' \\
&= \frac{e^{ikz}}{i \lambda z} e^{\frac{-i\pi}{\lambda z} \left[ x'^2+ y'^2 \right]} \mathcal{F} \left\{ E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 + y^2 \right] } \right\}_{p=\frac{x}{\lambda z}, q=\frac{y}{\lambda z}}
\end{align}
</math>


===Fraunhofer diffraction===
===Fraunhofer diffraction===

Revision as of 15:03, 14 April 2023

Notes on diffraction for holograms

Theory

Rayleigh-Sommerfeld diffraction theory

Approximations

Fresnel diffraction

Fresnel diffraction can be used for intermediate distances.

The Fresnel approximation is: \[ E(x,y,z) = \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{ik}{2z} \left[ (x - x')^2 + (y - y')^2 \right]} dx' dy' \] where

  • \(\displaystyle k=2 \pi / \lambda\)

Expanding out terms, we get: \[ \begin{align} E(x,y,z) &= \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{ik}{2z} \left[ (x - x')^2 + (y - y')^2 \right]} dx' dy'\\ &= \frac{e^{ikz}}{i \lambda z} \int \int E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 - 2x x' + x'^2 + y^2 - 2yy' + y'^2 \right]} dx' dy'\\ &= \frac{e^{ikz}}{i \lambda z} e^{\frac{-i\pi}{\lambda z} \left[ x'^2+ y'^2 \right]} \int \int E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 + y^2 \right] } e^{\frac{-i2\pi}{\lambda z} \left[ x x' + yy' \right]} dx' dy' \\ &= \frac{e^{ikz}}{i \lambda z} e^{\frac{-i\pi}{\lambda z} \left[ x'^2+ y'^2 \right]} \mathcal{F} \left\{ E(x', y', 0) e^{\frac{i\pi}{\lambda z} \left[ x^2 + y^2 \right] } \right\}_{p=\frac{x}{\lambda z}, q=\frac{y}{\lambda z}} \end{align} \]

Fraunhofer diffraction

Fraunhofer diffraction is used for far-field holograms.

Resources