Dual quaternion: Difference between revisions

Line 18: Line 18:


These can be combined as <math>\mathbf{q} = \mathbf{q}_t * \mathbf{q}_r = \mathbf{q}_r + \frac{\epsilon}{2}\mathbf{t}\mathbf{q}_r</math>.   
These can be combined as <math>\mathbf{q} = \mathbf{q}_t * \mathbf{q}_r = \mathbf{q}_r + \frac{\epsilon}{2}\mathbf{t}\mathbf{q}_r</math>.   
Applying the transformation to a point <math>\mathbf{p}</math> is:
Applying the transformation to a point <math>\mathbf{v} \in \mathbb{R}^3</math> is:


<math>\mathbf{p}' = \mathbf{q}\mathbf{p}\mathbf{q}^*</math>
<math>\mathbf{p}' = \mathbf{q}(1 + \epsilon\mathbf{v})\mathbf{q}^*</math>


==Resources==
==Resources==
* [https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf A Beginners Guide to Dual-Quaternions by Ben Kenwright]
* [https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf A Beginners Guide to Dual-Quaternions by Ben Kenwright]