Rotations: Difference between revisions

From David's Wiki
Line 35: Line 35:
\mathbf{R} = \mathbf{I} + (\sin\theta)\mathbf{K} + (1-\cos\theta)\mathbf{K}^2
\mathbf{R} = \mathbf{I} + (\sin\theta)\mathbf{K} + (1-\cos\theta)\mathbf{K}^2
\end{equation}
\end{equation}
\]
===Angle Axis to Quaternion===
Based on [http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm]
\[
\begin{align}
q_x &= k_x * \sin(\theta/2)\\
q_y &= k_y * \sin(\theta/2)\\
q_z &= k_z * \sin(\theta/2)\\
q_w &= \cos(\theta/2)
\end{align}
\]
\]



Revision as of 17:50, 19 May 2020

This article is about rotations in 3D space.

Representations

The most natural representation of rotations are Quaternions. However rotations can also be represented in various other forms.

Angle Axis

Rotation Vector

Euler Angles

Quaternion

Matrix

A \(3\times 3\) matrix is the most convenient form of a rotation since applying the rotation to a vector is simply a matrix multiplication.

Construction

This section is on converting between different forms of rotations.
How to construct a rotation.

Angle Axis to Matrix

Apply Wikipedia: Rodrigues' rotation formula

Suppose \(\mathbf{k}=(k_x, k_y, k_z)\) is the vector around which you want to rotate.
Let \[ \mathbf{K} = [\mathbf{k}]_\times = \begin{pmatrix} 0 & -k_z & k_y\\ k_z & 0 & -k_x\\ -k_y & k_x & 0 \end{pmatrix} \] Then our rotation matrix is: \[ \begin{equation} \mathbf{R} = \mathbf{I} + (\sin\theta)\mathbf{K} + (1-\cos\theta)\mathbf{K}^2 \end{equation} \]

Angle Axis to Quaternion

Based on http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm

\[ \begin{align} q_x &= k_x * \sin(\theta/2)\\ q_y &= k_y * \sin(\theta/2)\\ q_z &= k_z * \sin(\theta/2)\\ q_w &= \cos(\theta/2) \end{align} \]

Resources

References