Probability: Difference between revisions

 
(6 intermediate revisions by the same user not shown)
Line 32: Line 32:


===Joint Random Variables===
===Joint Random Variables===
Two random variables are independant if <math>f_{X,Y}(x,y) = f_X(x) f_Y(y)</math>.
Two random variables are independant iff <math>f_{X,Y}(x,y) = f_X(x) f_Y(y)</math>.<br>
Otherwise, the marginal distribution is <math>f_X(x) = \int f_{X,Y}(x,y) dy</math>.
Otherwise, the marginal distribution is <math>f_X(x) = \int f_{X,Y}(x,y) dy</math>.


Line 38: Line 38:
Let <math>g</math> be a monotonic increasing function and <math>Y = g(X)</math>.<br>
Let <math>g</math> be a monotonic increasing function and <math>Y = g(X)</math>.<br>
Then <math>F_Y(y) = P(Y \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y))</math>.<br>
Then <math>F_Y(y) = P(Y \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y))</math>.<br>
And <math>f_Y(y) = (d/dy)F_Y(y) = (d/dy) F_X(g^{-1}(y)) = f_X(g^{-1}(y)) (d/dy)g^{-1}(y)</math><br>
And <math>f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy}g^{-1}(y)</math><br>
Hence:
<math display="block">
  f_Y(y) = f_x(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)
</math>


==Expectation and Variance==
==Expectation and Variance==
Line 88: Line 92:
* <math>\bar{X} \sim N(\mu, \sigma^2 / n)</math>
* <math>\bar{X} \sim N(\mu, \sigma^2 / n)</math>
* <math>(n-1)S^2 / \sigma^2 \sim \chi^2(n-1)</math>
* <math>(n-1)S^2 / \sigma^2 \sim \chi^2(n-1)</math>
===Jensen's Inequality===
{{main | Wikipedia: Jensen's inequality}}
Let g be a convex function (i.e. second derivative is positive).
Then <math>g(E(x)) \leq E(g(x))</math>.


==Moments and Moment Generating Functions==
==Moments and Moment Generating Functions==
Line 100: Line 109:
===Moment Generating Functions===
===Moment Generating Functions===
To compute moments, we can use a moment generating function (MGF):
To compute moments, we can use a moment generating function (MGF):
<math>M_X(t) = E(e^{tX})</math>
<math display="block">M_X(t) = E(e^{tX})</math>
With the MGF, we can get any order moments by taking n derivatives and setting <math display="inline">t=0</math>.
With the MGF, we can get any order moments by taking n derivatives and setting <math display="inline">t=0</math>.
; Notes
; Notes
* The MGF, if it exists, uniquely defines the distribution.
* The MGF, if it exists, uniquely defines the distribution.
* The MGF of <math>X+Y</math> is <math>MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)</math>
* The MGF of <math>X+Y</math> is <math>MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)</math>
===Characteristic function===
===Characteristic function===


Line 148: Line 158:
Then the order statistics are <math>X_{(1)}, ..., X_{(n)}</math> where <math>X_{(i)}</math> represents the i'th smallest number.
Then the order statistics are <math>X_{(1)}, ..., X_{(n)}</math> where <math>X_{(i)}</math> represents the i'th smallest number.


;Min and Max
===Min and Max===
The easiest to reason about are the minimum and maximum order statistics:
The easiest to reason about are the minimum and maximum order statistics:
<math>P(X_{(1)} <= x) = P(\text{min}(X_i) <= x) = 1 - P(X_1 > x, ..., X_n > x)</math>
<math>P(X_{(1)} <= x) = P(\text{min}(X_i) <= x) = 1 - P(X_1 > x, ..., X_n > x)</math>
<math>P(X_{(n)} <= x) = P(\text{max}(X_i) <= x) = P(X_1 <= x, ..., X_n <= x)</math>
<math>P(X_{(n)} <= x) = P(\text{max}(X_i) <= x) = P(X_1 <= x, ..., X_n <= x)</math>


;Joint PDF
===Joint PDF===
If <math>X_i</math> has pdf <math>f</math>, the joint pdf of <math>X_{(1)}, ..., X_{(n)}</math> is:
If <math>X_i</math> has pdf <math>f</math>, the joint pdf of <math>X_{(1)}, ..., X_{(n)}</math> is:
<math>
<math>
Line 160: Line 170:
since there are n! ways perform a change of variables.
since there are n! ways perform a change of variables.


;Individual PDF
===Individual PDF===
<math>
f_{X(i)}(x) = \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} f(x) [1-F(x)]^{n-1}
</math>


==Inequalities and Limit Theorems==
==Inequalities and Limit Theorems==
Line 187: Line 200:
Apply Markov's inequality:<br>
Apply Markov's inequality:<br>
Let <math>Y = |X - \mu|</math><br>
Let <math>Y = |X - \mu|</math><br>
Then <math>P(|X - \mu| \geq k) = P(Y \geq k) = = P(Y^2 \geq k^2) \leq \frac{E(Y^2)}{k^2} = \frac{E((X - \mu)^2)}{k^2}</math>
Then:<br>
<math>
\begin{aligned}
P(|X - \mu| \geq k) &= P(Y \geq k) \\
&= P(Y^2 \geq k^2) \\
&\leq \frac{E(Y^2)}{k^2} \\
&= \frac{E((X - \mu)^2)}{k^2}
\end{aligned}
</math>
}}
}}
* Usually used to prove convergence in probability
* Usually used to prove convergence in probability