Probability: Difference between revisions

No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 12: Line 12:
* For all events <math>A</math> and <math>B</math>, <math>A \subset B \implies P(A) \leq P(B)</math>
* For all events <math>A</math> and <math>B</math>, <math>A \subset B \implies P(A) \leq P(B)</math>
{{hidden | Proof | }}
{{hidden | Proof | }}
===Conditional Probability===
<math>P(A|B)</math> is the probability of event A given event B.<br>
Mathematically, this is defined as <math>P(A|B) = P(A,B) / P(B)</math>.<br>
Note that this can also be written as <math>P(A|B)P(B) = P(A, B)</math>
With some additional substitution, we get '''Baye's Theorem''':
<math>
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
</math>
==Random Variables==
A random variable is a variable which takes on a distribution rather than a value.


===PMF, PDF, CDF===
===PMF, PDF, CDF===
Line 18: Line 30:
The comulative distribution function (CDF) is <math>F(x) = P(X \leq x)</math>.<br>
The comulative distribution function (CDF) is <math>F(x) = P(X \leq x)</math>.<br>
The CDF is the prefix sum of the PMF or the integral of the PDF. Likewise, the PDF is the derivative of the CDF.
The CDF is the prefix sum of the PMF or the integral of the PDF. Likewise, the PDF is the derivative of the CDF.
===Joint Random Variables===
Two random variables are independant iff <math>f_{X,Y}(x,y) = f_X(x) f_Y(y)</math>.<br>
Otherwise, the marginal distribution is <math>f_X(x) = \int f_{X,Y}(x,y) dy</math>.
===Change of variables===
Let <math>g</math> be a monotonic increasing function and <math>Y = g(X)</math>.<br>
Then <math>F_Y(y) = P(Y \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y))</math>.<br>
And <math>f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy}g^{-1}(y)</math><br>
Hence:
<math display="block">
  f_Y(y) = f_x(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)
</math>


==Expectation and Variance==
==Expectation and Variance==
Line 67: Line 92:
* <math>\bar{X} \sim N(\mu, \sigma^2 / n)</math>
* <math>\bar{X} \sim N(\mu, \sigma^2 / n)</math>
* <math>(n-1)S^2 / \sigma^2 \sim \chi^2(n-1)</math>
* <math>(n-1)S^2 / \sigma^2 \sim \chi^2(n-1)</math>
===Jensen's Inequality===
{{main | Wikipedia: Jensen's inequality}}
Let g be a convex function (i.e. second derivative is positive).
Then <math>g(E(x)) \leq E(g(x))</math>.


==Moments and Moment Generating Functions==
==Moments and Moment Generating Functions==
Line 79: Line 109:
===Moment Generating Functions===
===Moment Generating Functions===
To compute moments, we can use a moment generating function (MGF):
To compute moments, we can use a moment generating function (MGF):
<math>M_X(t) = E(e^{tX})</math>
<math display="block">M_X(t) = E(e^{tX})</math>
With the MGF, we can get any order moments by taking n derivatives and setting <math display="inline">t=0</math>.
With the MGF, we can get any order moments by taking n derivatives and setting <math display="inline">t=0</math>.
; Notes
; Notes
* The MGF, if it exists, uniquely defines the distribution.
* The MGF, if it exists, uniquely defines the distribution.
* The MGF of <math>X+Y</math> is <math>MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)</math>
* The MGF of <math>X+Y</math> is <math>MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)</math>
===Characteristic function===
===Characteristic function===


Line 127: Line 158:
Then the order statistics are <math>X_{(1)}, ..., X_{(n)}</math> where <math>X_{(i)}</math> represents the i'th smallest number.
Then the order statistics are <math>X_{(1)}, ..., X_{(n)}</math> where <math>X_{(i)}</math> represents the i'th smallest number.


;Min and Max
===Min and Max===
The easiest to reason about are the minimum and maximum order statistics:
The easiest to reason about are the minimum and maximum order statistics:
<math>P(X_{(1)} <= x) = P(\text{min}(X_i) <= x) = 1 - P(X_1 > x, ..., X_n > x)</math>
<math>P(X_{(1)} <= x) = P(\text{min}(X_i) <= x) = 1 - P(X_1 > x, ..., X_n > x)</math>
<math>P(X_{(n)} <= x) = P(\text{max}(X_i) <= x) = P(X_1 <= x, ..., X_n <= x)</math>
<math>P(X_{(n)} <= x) = P(\text{max}(X_i) <= x) = P(X_1 <= x, ..., X_n <= x)</math>


;Joint PDF
===Joint PDF===
If <math>X_i</math> has pdf <math>f</math>, the joint pdf of <math>X_{(1)}, ..., X_{(n)}</math> is:
If <math>X_i</math> has pdf <math>f</math>, the joint pdf of <math>X_{(1)}, ..., X_{(n)}</math> is:
<math>
<math>
Line 139: Line 170:
since there are n! ways perform a change of variables.
since there are n! ways perform a change of variables.


;Individual PDF
===Individual PDF===
<math>
f_{X(i)}(x) = \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} f(x) [1-F(x)]^{n-1}
</math>


==Inequalities and Limit Theorems==
==Inequalities and Limit Theorems==
Line 166: Line 200:
Apply Markov's inequality:<br>
Apply Markov's inequality:<br>
Let <math>Y = |X - \mu|</math><br>
Let <math>Y = |X - \mu|</math><br>
Then <math>P(|X - \mu| \geq k) = P(Y \geq k) = = P(Y^2 \geq k^2) \leq \frac{E(Y^2)}{k^2} = \frac{E((X - \mu)^2)}{k^2}</math>
Then:<br>
<math>
\begin{aligned}
P(|X - \mu| \geq k) &= P(Y \geq k) \\
&= P(Y^2 \geq k^2) \\
&\leq \frac{E(Y^2)}{k^2} \\
&= \frac{E((X - \mu)^2)}{k^2}
\end{aligned}
</math>
}}
}}
* Usually used to prove convergence in probability
* Usually used to prove convergence in probability
Line 229: Line 271:
==Textbooks==
==Textbooks==
* [https://smile.amazon.com/dp/032179477X Sheldon Ross' A First Course in Probability]
* [https://smile.amazon.com/dp/032179477X Sheldon Ross' A First Course in Probability]
** This is a very good textbook that is standard across many universities. However, it only covers one semester of content.
The books below cover both introductory probability as well as statistics.
* [https://smile.amazon.com/dp/0321795431 Hogg and Craig's Mathematical Statistics]
* [https://smile.amazon.com/dp/0321795431 Hogg and Craig's Mathematical Statistics]
* [https://smile.amazon.com/dp/0534243126 Casella and Burger's Statistical Inference]
* [https://smile.amazon.com/dp/0534243126 Casella and Burger's Statistical Inference]