Quaternion: Difference between revisions

 
(2 intermediate revisions by the same user not shown)
Line 132: Line 132:
See Ge ''et. al.''<ref name="ge1998double"></ref>
See Ge ''et. al.''<ref name="ge1998double"></ref>


{{hidden | Algebraic Verification |
<!-- {{hidden | Algebraic Verification |
Suppose our point is <math>\mathbf{x} \in \mathbb{R}^3</math> and our translation has direction <math>\mathbf{d} \in \mathbb{R}^3</math> with distance <math>d</math>.
Suppose our point is <math>\mathbf{x} \in \mathbb{R}^3</math> and our translation has direction <math>\mathbf{d} \in \mathbb{R}^3</math> with distance <math>d</math>.


Line 149: Line 149:
</math>
</math>


}}
}} -->


==Dual Quaternions==
==Dual Quaternions==
Line 170: Line 170:
* [https://www.researchgate.net/publication/265550132_Approaching_Dual_Quaternions_From_Matrix_Algebra Approaching Dual Quaternions From Matrix Algebra by Federico Thomas]
* [https://www.researchgate.net/publication/265550132_Approaching_Dual_Quaternions_From_Matrix_Algebra Approaching Dual Quaternions From Matrix Algebra by Federico Thomas]
* Double Quaternions for Motion Interpolation by Q.J. Ge, Amitabh Varshney, Jai P. Menon, Chu-Fei Chang
* Double Quaternions for Motion Interpolation by Q.J. Ge, Amitabh Varshney, Jai P. Menon, Chu-Fei Chang
* [https://probablydance.com/2017/08/05/intuitive-quaternions/ Less Weird Quaternions by Malte Skarupke]
** Derives rotations as a sequence of reflection and quaternion algebra from wedge products.
** Presents quaternions as a sequence of (90 deg rotation + scaling) operations in 3D space.


==References==
==References==