Probability: Difference between revisions
(81 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Calculus-based Probability | |||
This is content covered in STAT410 and STAT700 at UMD. | |||
== | ==Basics== | ||
===Axioms of Probability=== | |||
* <math>0 \leq P(E) \leq 1</math> | |||
=== | * <math>P(S) = 1</math> where <math>S</math> is your sample space | ||
* For mutually exclusive events <math>E_1, E_2, ...</math>, <math>P\left(\bigcup_i^\infty E_i\right) = \sum_i^\infty P(E_i)</math> | |||
===Gamma | ===Monotonicity=== | ||
* For all events <math>A</math> and <math>B</math>, <math>A \subset B \implies P(A) \leq P(B)</math> | |||
{{hidden | Proof | }} | |||
===Conditional Probability=== | |||
<math>P(A|B)</math> is the probability of event A given event B.<br> | |||
Mathematically, this is defined as <math>P(A|B) = P(A,B) / P(B)</math>.<br> | |||
Note that this can also be written as <math>P(A|B)P(B) = P(A, B)</math> | |||
With some additional substitution, we get '''Baye's Theorem''': | |||
<math> | |||
P(A|B) = \frac{P(B|A)P(A)}{P(B)} | |||
</math> | |||
==Random Variables== | |||
A random variable is a variable which takes on a distribution rather than a value. | |||
===PMF, PDF, CDF=== | |||
For discrete distributions, we call <math>p_{X}(x)=P(X=x)</math> the probability mass function (PMF).<br> | |||
For continuous distributions, we have the probability density function (PDF) <math>f(x)</math>.<br> | |||
The comulative distribution function (CDF) is <math>F(x) = P(X \leq x)</math>.<br> | |||
The CDF is the prefix sum of the PMF or the integral of the PDF. Likewise, the PDF is the derivative of the CDF. | |||
===Joint Random Variables=== | |||
Two random variables are independant iff <math>f_{X,Y}(x,y) = f_X(x) f_Y(y)</math>.<br> | |||
Otherwise, the marginal distribution is <math>f_X(x) = \int f_{X,Y}(x,y) dy</math>. | |||
===Change of variables=== | |||
Let <math>g</math> be a monotonic increasing function and <math>Y = g(X)</math>.<br> | |||
Then <math>F_Y(y) = P(Y \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y))</math>.<br> | |||
And <math>f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy}g^{-1}(y)</math><br> | |||
Hence: | |||
<math display="block"> | |||
f_Y(y) = f_x(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) | |||
</math> | |||
==Expectation and Variance== | |||
Some definitions and properties. | |||
===Definitions=== | |||
Let <math>X \sim D</math> for some distribution <math>D</math>. | |||
Let <math>S</math> be the support or domain of your distribution. | |||
* <math>E(X) = \sum_S xp(x)</math> or <math>\int_S xp(x)dx</math> | |||
* <math>Var(X) = E[(X-E(X))^2] = E(X^2) - (E(X))^2</math> | |||
===Total Expection=== | |||
<math>E_{X}(X) = E_{Y}(E_{X|Y}(X|Y))</math><br> | |||
Dr. Xu refers to this as the smooth property. | |||
{{hidden | Proof | | |||
<math> | |||
\begin{aligned} | |||
E(X) &= \int_S x p(x)dx \\ | |||
&= \int_x x \int_y p(x,y)dy dx \\ | |||
&= \int_x x \int_y p(x|y)p(y)dy dx \\ | |||
&= \int_y\int_x x p(x|y)dxp(y)dy | |||
\end{aligned} | |||
</math> | |||
}} | |||
===Total Variance=== | |||
<math>Var(Y) = E(Var(Y|X)) + Var(E(Y | X))</math><br> | |||
This one is not used as often on tests as total expectation | |||
{{hidden | Proof | | |||
<math> | |||
\begin{aligned} | |||
Var(Y) &= E(Y^2) - E(Y)^2 \\ | |||
&= E(E(Y^2|X)) - E(E(Y|X))^2\\ | |||
&= E(Var(Y|X) + E(Y|X)^2) - E(E(Y|X))^2\\ | |||
&= E((Var(Y|X)) + E(E(Y|X)^2) - E(E(Y|X))^2\\ | |||
&= E((Var(Y|X)) + Var(E(Y|X))\\ | |||
\end{aligned} | |||
</math> | |||
}} | |||
===Sample Mean and Variance=== | |||
The sample mean is <math>\bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_i</math>.<br> | |||
The unbiased sample variance is <math>S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2</math>. | |||
====Student's Theorem==== | |||
Let <math>X_1,...,X_n</math> be from <math>N(\mu, \sigma^2)</math>.<br> | |||
Then the following results about the sample mean <math>\bar{X}</math> | |||
and the unbiased sample variance <math>S^2</math> hold: | |||
* <math>\bar{X}</math> and <math>S^2</math> are independent | |||
* <math>\bar{X} \sim N(\mu, \sigma^2 / n)</math> | |||
* <math>(n-1)S^2 / \sigma^2 \sim \chi^2(n-1)</math> | |||
===Jensen's Inequality=== | |||
{{main | Wikipedia: Jensen's inequality}} | |||
Let g be a convex function (i.e. second derivative is positive). | |||
Then <math>g(E(x)) \leq E(g(x))</math>. | |||
==Moments and Moment Generating Functions== | |||
===Definitions=== | |||
{{main | Wikipedia: Moment (mathematics) | Wikipedia: Central moment | Wikipedia: Moment-generating function}} | |||
* <math>E(X^n)</math> the n'th moment | |||
* <math>E((X-\mu)^n)</math> the n'th central moment | |||
* <math>E(((X-\mu) / \sigma)^n)</math> the n'th standardized moment | |||
Expectation is the first moment and variance is the second central moment.<br> | |||
Additionally, ''skew'' is the third standardized moment and ''kurtosis'' is the fourth standardized moment. | |||
===Moment Generating Functions=== | |||
To compute moments, we can use a moment generating function (MGF): | |||
<math display="block">M_X(t) = E(e^{tX})</math> | |||
With the MGF, we can get any order moments by taking n derivatives and setting <math display="inline">t=0</math>. | |||
; Notes | |||
* The MGF, if it exists, uniquely defines the distribution. | |||
* The MGF of <math>X+Y</math> is <math>MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)</math> | |||
===Characteristic function=== | |||
==Convergence== | |||
{{main | Wikipedia: Convergence of random variables}} | |||
There are 4 common types of convergence. | |||
===Almost Surely=== | |||
* <math>P(\lim X_i = X) = 1</math> | |||
===In Probability=== | |||
For all <math>\epsilon > 0</math><br> | |||
<math>\lim P(|X_i - X| \geq \epsilon) = 0</math> | |||
* Implies Convergence in distribution | |||
===In Distribution=== | |||
Pointwise convergence of the cdf<br> | |||
A sequence of random variables <math>X_1,...</math> converges to <math>X</math> in probability | |||
if for all <math>x \in S</math>,<br> | |||
<math>\lim_{i \rightarrow \infty} F_i(x) = F(x)</math> | |||
* Equivalent to convergence in probability if it converges to a degenerate distribution (i.e. a number) | |||
===In Mean Squared=== | |||
<math>\lim_{i \rightarrow \infty} E(|X_i-X|^2)=0</math> | |||
==Delta Method== | |||
{{main | Wikipedia:Delta method}} | |||
Suppose <math>\sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)</math>.<br> | |||
Let <math>g</math> be a function such that <math>g'</math> exists and <math>g'(\theta) \neq 0</math><br> | |||
Then <math>\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2 g'(\theta)^2)</math> | |||
Multivariate:<br> | |||
<math>\sqrt{n}(B - \beta) \xrightarrow{D} N(0, \Sigma) \implies \sqrt{n}(h(B)-h(\beta)) \xrightarrow{D} N(0, h'(\theta)^T \Sigma h'(\theta))</math> | |||
;Notes | |||
* You can think of this like the Mean Value theorem for random variables. | |||
** <math>(g(X_n) - g(\theta)) \approx g'(\theta)(X_n - \theta)</math> | |||
==Order Statistics== | |||
Consider iid random variables <math>X_1, ..., X_n</math>.<br> | |||
Then the order statistics are <math>X_{(1)}, ..., X_{(n)}</math> where <math>X_{(i)}</math> represents the i'th smallest number. | |||
===Min and Max=== | |||
The easiest to reason about are the minimum and maximum order statistics: | |||
<math>P(X_{(1)} <= x) = P(\text{min}(X_i) <= x) = 1 - P(X_1 > x, ..., X_n > x)</math> | |||
<math>P(X_{(n)} <= x) = P(\text{max}(X_i) <= x) = P(X_1 <= x, ..., X_n <= x)</math> | |||
===Joint PDF=== | |||
If <math>X_i</math> has pdf <math>f</math>, the joint pdf of <math>X_{(1)}, ..., X_{(n)}</math> is: | |||
<math> | |||
g(x_1, ...) = n!*f(x_1)*...*f(x_n) | |||
</math> | |||
since there are n! ways perform a change of variables. | |||
===Individual PDF=== | |||
<math> | |||
f_{X(i)}(x) = \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} f(x) [1-F(x)]^{n-1} | |||
</math> | |||
==Inequalities and Limit Theorems== | |||
===Markov's Inequality=== | |||
Let <math>X</math> be a non-negative random variable.<br> | |||
Then <math>P(X \geq a) \leq \frac{E(X)}{a}</math> | |||
{{hidden | Proof | | |||
<math> | |||
\begin{aligned} | |||
E(X) | |||
&= \int_{0}^{\infty}xf(x)dx \\ | |||
&= \int_{0}^{a}xf(x)dx + \int_{a}^{\infty}xf(x)dx\\ | |||
&\geq \int_{a}^{\infty}xf(x)dx\\ | |||
&\geq \int_{a}^{\infty}af(x)dx\\ | |||
&=a \int_{a}^{\infty}f(x)dx\\ | |||
&=a * P(X \geq a)\\ | |||
\implies& P(X \geq a) \leq \frac{E(X)}{a} | |||
\end{aligned} | |||
</math> | |||
}} | |||
===Chebyshev's Inequality=== | |||
* <math>P(|X - \mu| \geq k \sigma) \leq \frac{1}{k^2}</math> | |||
* <math>P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2}</math> | |||
{{hidden | Proof | | |||
Apply Markov's inequality:<br> | |||
Let <math>Y = |X - \mu|</math><br> | |||
Then:<br> | |||
<math> | |||
\begin{aligned} | |||
P(|X - \mu| \geq k) &= P(Y \geq k) \\ | |||
&= P(Y^2 \geq k^2) \\ | |||
&\leq \frac{E(Y^2)}{k^2} \\ | |||
&= \frac{E((X - \mu)^2)}{k^2} | |||
\end{aligned} | |||
</math> | |||
}} | |||
* Usually used to prove convergence in probability | |||
===Central Limit Theorem=== | |||
Very very important. Never forget this.<br> | |||
For any distribution, the sample mean converges in distribution to normal.<br> | |||
Let <math>\mu = E(x)</math> and <math>\sigma^2 = Var(x)</math><br> | |||
Different ways of saying the same thing: | |||
* <math>\sqrt{n}(\bar{x} - \mu) \sim N(0, \sigma^2)</math> | |||
* <math>\frac{\sqrt{n}}{\sigma}(\bar{x} - \mu) \sim N(0, 1)</math> | |||
* <math>\bar{x} \sim N(\mu, \sigma^2/n)</math> | |||
===Law of Large Numbers=== | |||
The sample mean converges to the population mean in probability.<br> | |||
For all <math>\epsilon > 0</math>, | |||
<math>\lim_{n \rightarrow \infty} P(|\bar{X}_n - E(X)| \geq \epsilon) = 0</math> | |||
;Notes | |||
* The sample mean converges to the population mean almost surely. | |||
==Properties and Relationships between distributions== | |||
{{main | Wikipedia: Relationships among probability distributions}} | |||
;This is important for exams. | |||
===Poisson Distribution=== | |||
* If <math>X_i \sim Poisson(\lambda_i)</math> then <math>\sum X_i \sim Poisson(\sum \lambda_i)</math> | |||
===Normal Distribution=== | |||
* If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math> | |||
===Exponential Distribution=== | |||
* <math>\operatorname{Exp}(\lambda)</math> is equivalent to <math>\Gamma(1, 1/\lambda)</math> | |||
** Note that some conventions flip the second parameter of gamma, so it would be <math>\Gamma(1, \lambda)</math> | |||
* If <math>\epsilon_1, ..., \epsilon_n</math> are exponential distributions then <math>\min\{\epsilon_i\} \sim \exp(\sum \lambda_i)</math> | |||
* Note that the maximum is not exponentially distributed | |||
** However, if <math>X_1, ..., X_n \sim \exp(1)</math> then <math>Z_n=n\exp(\max\{\epsilon_i\}) \rightarrow \exp(1)</math> | |||
===Gamma Distribution=== | |||
Note exponential distributions are also Gamma distrubitions | Note exponential distributions are also Gamma distrubitions | ||
* If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br> | |||
If <math>X_1 \sim \Gamma(\alpha, \theta)</math> and <math>X_2 \sim \Gamma(\beta, \theta)</math>, then <math>\frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)</math> | * If <math>X_1 \sim \Gamma(k_1, \theta)</math> and <math>X_2 \sim \Gamma(k_2, \theta)</math> then <math>X_2 + X_2 \sim \Gamma(k_1 + k_2, \theta)</math>. | ||
* If <math>X_1 \sim \Gamma(\alpha, \theta)</math> and <math>X_2 \sim \Gamma(\beta, \theta)</math>, then <math>\frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)</math>. | |||
===T-distribution=== | |||
* Ratio of standard normal and squared-root of Chi-sq distribution yields T-distribution. | |||
** If <math>Z \sim N(0,1)</math> and <math> V \sim \Chi^2(v)</math> then <math>\frac{Z}{\sqrt{V/v}} \sim \text{t-dist}(v)</math> | |||
===Chi-Sq Distribution=== | |||
* The ratio of two normalized Chi-sq is an F-distributions | |||
** If <math>X \sim \chi^2_{d1}</math> and <math>Y \sim \chi^2_{d2}</math> then <math>\frac{X/d1}{Y/d2} \sim F(d1,d2)</math> | |||
* If <math>Z_1,...,Z_k \sim N(0,1)</math> then <math>Z_1^2 + ... + Z_k^2 \sim \Chi^2(k)</math> | |||
* If <math>X_i \sim \Chi^2(k_i)</math> then <math>X_1 + ... + X_n \sim \Chi^2(k_1 +...+ k_n)</math> | |||
* <math>\Chi^2(k)</math> is equivalent to <math>\Gamma(k/2, 2)</math> | |||
===F Distribution=== | |||
Too many to list. See [[Wikipedia: F-distribution]]. | |||
Most important are Chi-sq and T distribution: | |||
* If <math>X \sim \chi^2_{d1}</math> and <math>Y \sim \chi^2_{d2}</math> then <math>\frac{X/d1}{Y/d2} \sim F(d1,d2)</math> | |||
* If <math>X \sim t_{(n)}</math> then <math>X^2 \sim F(1, n)</math> and <math>X^{-2} \sim F(n, 1)</math> | |||
==Textbooks== | |||
* [https://smile.amazon.com/dp/032179477X Sheldon Ross' A First Course in Probability] | |||
* [https://smile.amazon.com/dp/0321795431 Hogg and Craig's Mathematical Statistics] | |||
* [https://smile.amazon.com/dp/0534243126 Casella and Burger's Statistical Inference] |
Latest revision as of 22:57, 22 February 2024
Calculus-based Probability
This is content covered in STAT410 and STAT700 at UMD.
Basics
Axioms of Probability
- \(\displaystyle 0 \leq P(E) \leq 1\)
- \(\displaystyle P(S) = 1\) where \(\displaystyle S\) is your sample space
- For mutually exclusive events \(\displaystyle E_1, E_2, ...\), \(\displaystyle P\left(\bigcup_i^\infty E_i\right) = \sum_i^\infty P(E_i)\)
Monotonicity
- For all events \(\displaystyle A\) and \(\displaystyle B\), \(\displaystyle A \subset B \implies P(A) \leq P(B)\)
Conditional Probability
\(\displaystyle P(A|B)\) is the probability of event A given event B.
Mathematically, this is defined as \(\displaystyle P(A|B) = P(A,B) / P(B)\).
Note that this can also be written as \(\displaystyle P(A|B)P(B) = P(A, B)\)
With some additional substitution, we get Baye's Theorem:
\(\displaystyle
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\)
Random Variables
A random variable is a variable which takes on a distribution rather than a value.
PMF, PDF, CDF
For discrete distributions, we call \(\displaystyle p_{X}(x)=P(X=x)\) the probability mass function (PMF).
For continuous distributions, we have the probability density function (PDF) \(\displaystyle f(x)\).
The comulative distribution function (CDF) is \(\displaystyle F(x) = P(X \leq x)\).
The CDF is the prefix sum of the PMF or the integral of the PDF. Likewise, the PDF is the derivative of the CDF.
Joint Random Variables
Two random variables are independant iff \(\displaystyle f_{X,Y}(x,y) = f_X(x) f_Y(y)\).
Otherwise, the marginal distribution is \(\displaystyle f_X(x) = \int f_{X,Y}(x,y) dy\).
Change of variables
Let \(\displaystyle g\) be a monotonic increasing function and \(\displaystyle Y = g(X)\).
Then \(\displaystyle F_Y(y) = P(Y \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y))\).
And \(\displaystyle f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy}g^{-1}(y)\)
Hence:
\[
f_Y(y) = f_x(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)
\]
Expectation and Variance
Some definitions and properties.
Definitions
Let \(\displaystyle X \sim D\) for some distribution \(\displaystyle D\). Let \(\displaystyle S\) be the support or domain of your distribution.
- \(\displaystyle E(X) = \sum_S xp(x)\) or \(\displaystyle \int_S xp(x)dx\)
- \(\displaystyle Var(X) = E[(X-E(X))^2] = E(X^2) - (E(X))^2\)
Total Expection
\(\displaystyle E_{X}(X) = E_{Y}(E_{X|Y}(X|Y))\)
Dr. Xu refers to this as the smooth property.
\(\displaystyle \begin{aligned} E(X) &= \int_S x p(x)dx \\ &= \int_x x \int_y p(x,y)dy dx \\ &= \int_x x \int_y p(x|y)p(y)dy dx \\ &= \int_y\int_x x p(x|y)dxp(y)dy \end{aligned} \)
Total Variance
\(\displaystyle Var(Y) = E(Var(Y|X)) + Var(E(Y | X))\)
This one is not used as often on tests as total expectation
\(\displaystyle \begin{aligned} Var(Y) &= E(Y^2) - E(Y)^2 \\ &= E(E(Y^2|X)) - E(E(Y|X))^2\\ &= E(Var(Y|X) + E(Y|X)^2) - E(E(Y|X))^2\\ &= E((Var(Y|X)) + E(E(Y|X)^2) - E(E(Y|X))^2\\ &= E((Var(Y|X)) + Var(E(Y|X))\\ \end{aligned} \)
Sample Mean and Variance
The sample mean is \(\displaystyle \bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_i\).
The unbiased sample variance is \(\displaystyle S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2\).
Student's Theorem
Let \(\displaystyle X_1,...,X_n\) be from \(\displaystyle N(\mu, \sigma^2)\).
Then the following results about the sample mean \(\displaystyle \bar{X}\)
and the unbiased sample variance \(\displaystyle S^2\) hold:
- \(\displaystyle \bar{X}\) and \(\displaystyle S^2\) are independent
- \(\displaystyle \bar{X} \sim N(\mu, \sigma^2 / n)\)
- \(\displaystyle (n-1)S^2 / \sigma^2 \sim \chi^2(n-1)\)
Jensen's Inequality
Let g be a convex function (i.e. second derivative is positive). Then \(\displaystyle g(E(x)) \leq E(g(x))\).
Moments and Moment Generating Functions
Definitions
- \(\displaystyle E(X^n)\) the n'th moment
- \(\displaystyle E((X-\mu)^n)\) the n'th central moment
- \(\displaystyle E(((X-\mu) / \sigma)^n)\) the n'th standardized moment
Expectation is the first moment and variance is the second central moment.
Additionally, skew is the third standardized moment and kurtosis is the fourth standardized moment.
Moment Generating Functions
To compute moments, we can use a moment generating function (MGF): \[M_X(t) = E(e^{tX})\] With the MGF, we can get any order moments by taking n derivatives and setting \(t=0\).
- Notes
- The MGF, if it exists, uniquely defines the distribution.
- The MGF of \(\displaystyle X+Y\) is \(\displaystyle MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)\)
Characteristic function
Convergence
There are 4 common types of convergence.
Almost Surely
- \(\displaystyle P(\lim X_i = X) = 1\)
In Probability
For all \(\displaystyle \epsilon \gt 0\)
\(\displaystyle \lim P(|X_i - X| \geq \epsilon) = 0\)
- Implies Convergence in distribution
In Distribution
Pointwise convergence of the cdf
A sequence of random variables \(\displaystyle X_1,...\) converges to \(\displaystyle X\) in probability
if for all \(\displaystyle x \in S\),
\(\displaystyle \lim_{i \rightarrow \infty} F_i(x) = F(x)\)
- Equivalent to convergence in probability if it converges to a degenerate distribution (i.e. a number)
In Mean Squared
\(\displaystyle \lim_{i \rightarrow \infty} E(|X_i-X|^2)=0\)
Delta Method
Suppose \(\displaystyle \sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)\).
Let \(\displaystyle g\) be a function such that \(\displaystyle g'\) exists and \(\displaystyle g'(\theta) \neq 0\)
Then \(\displaystyle \sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2 g'(\theta)^2)\)
Multivariate:
\(\displaystyle \sqrt{n}(B - \beta) \xrightarrow{D} N(0, \Sigma) \implies \sqrt{n}(h(B)-h(\beta)) \xrightarrow{D} N(0, h'(\theta)^T \Sigma h'(\theta))\)
- Notes
- You can think of this like the Mean Value theorem for random variables.
- \(\displaystyle (g(X_n) - g(\theta)) \approx g'(\theta)(X_n - \theta)\)
Order Statistics
Consider iid random variables \(\displaystyle X_1, ..., X_n\).
Then the order statistics are \(\displaystyle X_{(1)}, ..., X_{(n)}\) where \(\displaystyle X_{(i)}\) represents the i'th smallest number.
Min and Max
The easiest to reason about are the minimum and maximum order statistics: \(\displaystyle P(X_{(1)} \lt = x) = P(\text{min}(X_i) \lt = x) = 1 - P(X_1 \gt x, ..., X_n \gt x)\) \(\displaystyle P(X_{(n)} \lt = x) = P(\text{max}(X_i) \lt = x) = P(X_1 \lt = x, ..., X_n \lt = x)\)
Joint PDF
If \(\displaystyle X_i\) has pdf \(\displaystyle f\), the joint pdf of \(\displaystyle X_{(1)}, ..., X_{(n)}\) is: \(\displaystyle g(x_1, ...) = n!*f(x_1)*...*f(x_n) \) since there are n! ways perform a change of variables.
Individual PDF
\(\displaystyle f_{X(i)}(x) = \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} f(x) [1-F(x)]^{n-1} \)
Inequalities and Limit Theorems
Markov's Inequality
Let \(\displaystyle X\) be a non-negative random variable.
Then \(\displaystyle P(X \geq a) \leq \frac{E(X)}{a}\)
\(\displaystyle \begin{aligned} E(X) &= \int_{0}^{\infty}xf(x)dx \\ &= \int_{0}^{a}xf(x)dx + \int_{a}^{\infty}xf(x)dx\\ &\geq \int_{a}^{\infty}xf(x)dx\\ &\geq \int_{a}^{\infty}af(x)dx\\ &=a \int_{a}^{\infty}f(x)dx\\ &=a * P(X \geq a)\\ \implies& P(X \geq a) \leq \frac{E(X)}{a} \end{aligned} \)
Chebyshev's Inequality
- \(\displaystyle P(|X - \mu| \geq k \sigma) \leq \frac{1}{k^2}\)
- \(\displaystyle P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2}\)
Apply Markov's inequality:
Let \(\displaystyle Y = |X - \mu|\)
Then:
\(\displaystyle
\begin{aligned}
P(|X - \mu| \geq k) &= P(Y \geq k) \\
&= P(Y^2 \geq k^2) \\
&\leq \frac{E(Y^2)}{k^2} \\
&= \frac{E((X - \mu)^2)}{k^2}
\end{aligned}
\)
- Usually used to prove convergence in probability
Central Limit Theorem
Very very important. Never forget this.
For any distribution, the sample mean converges in distribution to normal.
Let \(\displaystyle \mu = E(x)\) and \(\displaystyle \sigma^2 = Var(x)\)
Different ways of saying the same thing:
- \(\displaystyle \sqrt{n}(\bar{x} - \mu) \sim N(0, \sigma^2)\)
- \(\displaystyle \frac{\sqrt{n}}{\sigma}(\bar{x} - \mu) \sim N(0, 1)\)
- \(\displaystyle \bar{x} \sim N(\mu, \sigma^2/n)\)
Law of Large Numbers
The sample mean converges to the population mean in probability.
For all \(\displaystyle \epsilon \gt 0\),
\(\displaystyle \lim_{n \rightarrow \infty} P(|\bar{X}_n - E(X)| \geq \epsilon) = 0\)
- Notes
- The sample mean converges to the population mean almost surely.
Properties and Relationships between distributions
- This is important for exams.
Poisson Distribution
- If \(\displaystyle X_i \sim Poisson(\lambda_i)\) then \(\displaystyle \sum X_i \sim Poisson(\sum \lambda_i)\)
Normal Distribution
- If \(\displaystyle X_1 \sim N(\mu_1, \sigma_1^2)\) and \(\displaystyle X_2 \sim N(\mu_2, \sigma_2^2)\) then \(\displaystyle \lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)\) for any \(\displaystyle \lambda_1, \lambda_2 \in \mathbb{R}\)
Exponential Distribution
- \(\displaystyle \operatorname{Exp}(\lambda)\) is equivalent to \(\displaystyle \Gamma(1, 1/\lambda)\)
- Note that some conventions flip the second parameter of gamma, so it would be \(\displaystyle \Gamma(1, \lambda)\)
- If \(\displaystyle \epsilon_1, ..., \epsilon_n\) are exponential distributions then \(\displaystyle \min\{\epsilon_i\} \sim \exp(\sum \lambda_i)\)
- Note that the maximum is not exponentially distributed
- However, if \(\displaystyle X_1, ..., X_n \sim \exp(1)\) then \(\displaystyle Z_n=n\exp(\max\{\epsilon_i\}) \rightarrow \exp(1)\)
Gamma Distribution
Note exponential distributions are also Gamma distrubitions
- If \(\displaystyle X \sim \Gamma(k, \theta)\) then \(\displaystyle \lambda X \sim \Gamma(k, c\theta)\).
- If \(\displaystyle X_1 \sim \Gamma(k_1, \theta)\) and \(\displaystyle X_2 \sim \Gamma(k_2, \theta)\) then \(\displaystyle X_2 + X_2 \sim \Gamma(k_1 + k_2, \theta)\).
- If \(\displaystyle X_1 \sim \Gamma(\alpha, \theta)\) and \(\displaystyle X_2 \sim \Gamma(\beta, \theta)\), then \(\displaystyle \frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)\).
T-distribution
- Ratio of standard normal and squared-root of Chi-sq distribution yields T-distribution.
- If \(\displaystyle Z \sim N(0,1)\) and \(\displaystyle V \sim \Chi^2(v)\) then \(\displaystyle \frac{Z}{\sqrt{V/v}} \sim \text{t-dist}(v)\)
Chi-Sq Distribution
- The ratio of two normalized Chi-sq is an F-distributions
- If \(\displaystyle X \sim \chi^2_{d1}\) and \(\displaystyle Y \sim \chi^2_{d2}\) then \(\displaystyle \frac{X/d1}{Y/d2} \sim F(d1,d2)\)
- If \(\displaystyle Z_1,...,Z_k \sim N(0,1)\) then \(\displaystyle Z_1^2 + ... + Z_k^2 \sim \Chi^2(k)\)
- If \(\displaystyle X_i \sim \Chi^2(k_i)\) then \(\displaystyle X_1 + ... + X_n \sim \Chi^2(k_1 +...+ k_n)\)
- \(\displaystyle \Chi^2(k)\) is equivalent to \(\displaystyle \Gamma(k/2, 2)\)
F Distribution
Too many to list. See Wikipedia: F-distribution.
Most important are Chi-sq and T distribution:
- If \(\displaystyle X \sim \chi^2_{d1}\) and \(\displaystyle Y \sim \chi^2_{d2}\) then \(\displaystyle \frac{X/d1}{Y/d2} \sim F(d1,d2)\)
- If \(\displaystyle X \sim t_{(n)}\) then \(\displaystyle X^2 \sim F(1, n)\) and \(\displaystyle X^{-2} \sim F(n, 1)\)