Probability: Difference between revisions
Created page with "Introductory Probability as taught in [https://www.pearson.com/us/higher-education/program/Ross-First-Course-in-Probability-A-9th-Edition/PGM110742.html Sheldon Ross' book]..." |
|||
(82 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Calculus-based Probability | |||
This is content covered in STAT410 and STAT700 at UMD. | |||
== | ==Basics== | ||
This is | ===Axioms of Probability=== | ||
* <math>0 \leq P(E) \leq 1</math> | |||
===Normal + | * <math>P(S) = 1</math> where <math>S</math> is your sample space | ||
===Gamma | * For mutually exclusive events <math>E_1, E_2, ...</math>, <math>P\left(\bigcup_i^\infty E_i\right) = \sum_i^\infty P(E_i)</math> | ||
===Monotonicity=== | |||
* For all events <math>A</math> and <math>B</math>, <math>A \subset B \implies P(A) \leq P(B)</math> | |||
{{hidden | Proof | }} | |||
===Conditional Probability=== | |||
<math>P(A|B)</math> is the probability of event A given event B.<br> | |||
Mathematically, this is defined as <math>P(A|B) = P(A,B) / P(B)</math>.<br> | |||
Note that this can also be written as <math>P(A|B)P(B) = P(A, B)</math> | |||
With some additional substitution, we get '''Baye's Theorem''': | |||
<math> | |||
P(A|B) = \frac{P(B|A)P(A)}{P(B)} | |||
</math> | |||
==Random Variables== | |||
A random variable is a variable which takes on a distribution rather than a value. | |||
===PMF, PDF, CDF=== | |||
For discrete distributions, we call <math>p_{X}(x)=P(X=x)</math> the probability mass function (PMF).<br> | |||
For continuous distributions, we have the probability density function (PDF) <math>f(x)</math>.<br> | |||
The comulative distribution function (CDF) is <math>F(x) = P(X \leq x)</math>.<br> | |||
The CDF is the prefix sum of the PMF or the integral of the PDF. Likewise, the PDF is the derivative of the CDF. | |||
===Joint Random Variables=== | |||
Two random variables are independant iff <math>f_{X,Y}(x,y) = f_X(x) f_Y(y)</math>.<br> | |||
Otherwise, the marginal distribution is <math>f_X(x) = \int f_{X,Y}(x,y) dy</math>. | |||
===Change of variables=== | |||
Let <math>g</math> be a monotonic increasing function and <math>Y = g(X)</math>.<br> | |||
Then <math>F_Y(y) = P(Y \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y))</math>.<br> | |||
And <math>f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy}g^{-1}(y)</math><br> | |||
Hence: | |||
<math display="block"> | |||
f_Y(y) = f_x(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) | |||
</math> | |||
==Expectation and Variance== | |||
Some definitions and properties. | |||
===Definitions=== | |||
Let <math>X \sim D</math> for some distribution <math>D</math>. | |||
Let <math>S</math> be the support or domain of your distribution. | |||
* <math>E(X) = \sum_S xp(x)</math> or <math>\int_S xp(x)dx</math> | |||
* <math>Var(X) = E[(X-E(X))^2] = E(X^2) - (E(X))^2</math> | |||
===Total Expection=== | |||
<math>E_{X}(X) = E_{Y}(E_{X|Y}(X|Y))</math><br> | |||
Dr. Xu refers to this as the smooth property. | |||
{{hidden | Proof | | |||
<math> | |||
\begin{aligned} | |||
E(X) &= \int_S x p(x)dx \\ | |||
&= \int_x x \int_y p(x,y)dy dx \\ | |||
&= \int_x x \int_y p(x|y)p(y)dy dx \\ | |||
&= \int_y\int_x x p(x|y)dxp(y)dy | |||
\end{aligned} | |||
</math> | |||
}} | |||
===Total Variance=== | |||
<math>Var(Y) = E(Var(Y|X)) + Var(E(Y | X))</math><br> | |||
This one is not used as often on tests as total expectation | |||
{{hidden | Proof | | |||
<math> | |||
\begin{aligned} | |||
Var(Y) &= E(Y^2) - E(Y)^2 \\ | |||
&= E(E(Y^2|X)) - E(E(Y|X))^2\\ | |||
&= E(Var(Y|X) + E(Y|X)^2) - E(E(Y|X))^2\\ | |||
&= E((Var(Y|X)) + E(E(Y|X)^2) - E(E(Y|X))^2\\ | |||
&= E((Var(Y|X)) + Var(E(Y|X))\\ | |||
\end{aligned} | |||
</math> | |||
}} | |||
===Sample Mean and Variance=== | |||
The sample mean is <math>\bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_i</math>.<br> | |||
The unbiased sample variance is <math>S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2</math>. | |||
====Student's Theorem==== | |||
Let <math>X_1,...,X_n</math> be from <math>N(\mu, \sigma^2)</math>.<br> | |||
Then the following results about the sample mean <math>\bar{X}</math> | |||
and the unbiased sample variance <math>S^2</math> hold: | |||
* <math>\bar{X}</math> and <math>S^2</math> are independent | |||
* <math>\bar{X} \sim N(\mu, \sigma^2 / n)</math> | |||
* <math>(n-1)S^2 / \sigma^2 \sim \chi^2(n-1)</math> | |||
===Jensen's Inequality=== | |||
{{main | Wikipedia: Jensen's inequality}} | |||
Let g be a convex function (i.e. second derivative is positive). | |||
Then <math>g(E(x)) \leq E(g(x))</math>. | |||
==Moments and Moment Generating Functions== | |||
===Definitions=== | |||
{{main | Wikipedia: Moment (mathematics) | Wikipedia: Central moment | Wikipedia: Moment-generating function}} | |||
* <math>E(X^n)</math> the n'th moment | |||
* <math>E((X-\mu)^n)</math> the n'th central moment | |||
* <math>E(((X-\mu) / \sigma)^n)</math> the n'th standardized moment | |||
Expectation is the first moment and variance is the second central moment.<br> | |||
Additionally, ''skew'' is the third standardized moment and ''kurtosis'' is the fourth standardized moment. | |||
===Moment Generating Functions=== | |||
To compute moments, we can use a moment generating function (MGF): | |||
<math display="block">M_X(t) = E(e^{tX})</math> | |||
With the MGF, we can get any order moments by taking n derivatives and setting <math display="inline">t=0</math>. | |||
; Notes | |||
* The MGF, if it exists, uniquely defines the distribution. | |||
* The MGF of <math>X+Y</math> is <math>MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)</math> | |||
===Characteristic function=== | |||
==Convergence== | |||
{{main | Wikipedia: Convergence of random variables}} | |||
There are 4 common types of convergence. | |||
===Almost Surely=== | |||
* <math>P(\lim X_i = X) = 1</math> | |||
===In Probability=== | |||
For all <math>\epsilon > 0</math><br> | |||
<math>\lim P(|X_i - X| \geq \epsilon) = 0</math> | |||
* Implies Convergence in distribution | |||
===In Distribution=== | |||
Pointwise convergence of the cdf<br> | |||
A sequence of random variables <math>X_1,...</math> converges to <math>X</math> in probability | |||
if for all <math>x \in S</math>,<br> | |||
<math>\lim_{i \rightarrow \infty} F_i(x) = F(x)</math> | |||
* Equivalent to convergence in probability if it converges to a degenerate distribution (i.e. a number) | |||
===In Mean Squared=== | |||
<math>\lim_{i \rightarrow \infty} E(|X_i-X|^2)=0</math> | |||
==Delta Method== | |||
{{main | Wikipedia:Delta method}} | |||
Suppose <math>\sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)</math>.<br> | |||
Let <math>g</math> be a function such that <math>g'</math> exists and <math>g'(\theta) \neq 0</math><br> | |||
Then <math>\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2 g'(\theta)^2)</math> | |||
Multivariate:<br> | |||
<math>\sqrt{n}(B - \beta) \xrightarrow{D} N(0, \Sigma) \implies \sqrt{n}(h(B)-h(\beta)) \xrightarrow{D} N(0, h'(\theta)^T \Sigma h'(\theta))</math> | |||
;Notes | |||
* You can think of this like the Mean Value theorem for random variables. | |||
** <math>(g(X_n) - g(\theta)) \approx g'(\theta)(X_n - \theta)</math> | |||
==Order Statistics== | |||
Consider iid random variables <math>X_1, ..., X_n</math>.<br> | |||
Then the order statistics are <math>X_{(1)}, ..., X_{(n)}</math> where <math>X_{(i)}</math> represents the i'th smallest number. | |||
===Min and Max=== | |||
The easiest to reason about are the minimum and maximum order statistics: | |||
<math>P(X_{(1)} <= x) = P(\text{min}(X_i) <= x) = 1 - P(X_1 > x, ..., X_n > x)</math> | |||
<math>P(X_{(n)} <= x) = P(\text{max}(X_i) <= x) = P(X_1 <= x, ..., X_n <= x)</math> | |||
===Joint PDF=== | |||
If <math>X_i</math> has pdf <math>f</math>, the joint pdf of <math>X_{(1)}, ..., X_{(n)}</math> is: | |||
<math> | |||
g(x_1, ...) = n!*f(x_1)*...*f(x_n) | |||
</math> | |||
since there are n! ways perform a change of variables. | |||
===Individual PDF=== | |||
<math> | |||
f_{X(i)}(x) = \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} f(x) [1-F(x)]^{n-1} | |||
</math> | |||
==Inequalities and Limit Theorems== | |||
===Markov's Inequality=== | |||
Let <math>X</math> be a non-negative random variable.<br> | |||
Then <math>P(X \geq a) \leq \frac{E(X)}{a}</math> | |||
{{hidden | Proof | | |||
<math> | |||
\begin{aligned} | |||
E(X) | |||
&= \int_{0}^{\infty}xf(x)dx \\ | |||
&= \int_{0}^{a}xf(x)dx + \int_{a}^{\infty}xf(x)dx\\ | |||
&\geq \int_{a}^{\infty}xf(x)dx\\ | |||
&\geq \int_{a}^{\infty}af(x)dx\\ | |||
&=a \int_{a}^{\infty}f(x)dx\\ | |||
&=a * P(X \geq a)\\ | |||
\implies& P(X \geq a) \leq \frac{E(X)}{a} | |||
\end{aligned} | |||
</math> | |||
}} | |||
===Chebyshev's Inequality=== | |||
* <math>P(|X - \mu| \geq k \sigma) \leq \frac{1}{k^2}</math> | |||
* <math>P(|X - \mu| \geq k) \leq \frac{\sigma^2}{k^2}</math> | |||
{{hidden | Proof | | |||
Apply Markov's inequality:<br> | |||
Let <math>Y = |X - \mu|</math><br> | |||
Then:<br> | |||
<math> | |||
\begin{aligned} | |||
P(|X - \mu| \geq k) &= P(Y \geq k) \\ | |||
&= P(Y^2 \geq k^2) \\ | |||
&\leq \frac{E(Y^2)}{k^2} \\ | |||
&= \frac{E((X - \mu)^2)}{k^2} | |||
\end{aligned} | |||
</math> | |||
}} | |||
* Usually used to prove convergence in probability | |||
===Central Limit Theorem=== | |||
Very very important. Never forget this.<br> | |||
For any distribution, the sample mean converges in distribution to normal.<br> | |||
Let <math>\mu = E(x)</math> and <math>\sigma^2 = Var(x)</math><br> | |||
Different ways of saying the same thing: | |||
* <math>\sqrt{n}(\bar{x} - \mu) \sim N(0, \sigma^2)</math> | |||
* <math>\frac{\sqrt{n}}{\sigma}(\bar{x} - \mu) \sim N(0, 1)</math> | |||
* <math>\bar{x} \sim N(\mu, \sigma^2/n)</math> | |||
===Law of Large Numbers=== | |||
The sample mean converges to the population mean in probability.<br> | |||
For all <math>\epsilon > 0</math>, | |||
<math>\lim_{n \rightarrow \infty} P(|\bar{X}_n - E(X)| \geq \epsilon) = 0</math> | |||
;Notes | |||
* The sample mean converges to the population mean almost surely. | |||
==Properties and Relationships between distributions== | |||
{{main | Wikipedia: Relationships among probability distributions}} | |||
;This is important for exams. | |||
===Poisson Distribution=== | |||
* If <math>X_i \sim Poisson(\lambda_i)</math> then <math>\sum X_i \sim Poisson(\sum \lambda_i)</math> | |||
===Normal Distribution=== | |||
* If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math> | |||
===Exponential Distribution=== | |||
* <math>\operatorname{Exp}(\lambda)</math> is equivalent to <math>\Gamma(1, 1/\lambda)</math> | |||
** Note that some conventions flip the second parameter of gamma, so it would be <math>\Gamma(1, \lambda)</math> | |||
* If <math>\epsilon_1, ..., \epsilon_n</math> are exponential distributions then <math>\min\{\epsilon_i\} \sim \exp(\sum \lambda_i)</math> | |||
* Note that the maximum is not exponentially distributed | |||
** However, if <math>X_1, ..., X_n \sim \exp(1)</math> then <math>Z_n=n\exp(\max\{\epsilon_i\}) \rightarrow \exp(1)</math> | |||
===Gamma Distribution=== | |||
Note exponential distributions are also Gamma distrubitions | Note exponential distributions are also Gamma distrubitions | ||
* If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br> | |||
If <math>X_1 \sim \Gamma(\alpha, \theta)</math> and <math>X_2 \sim \Gamma(\beta, \theta)</math>, then <math>\frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)</math> | * If <math>X_1 \sim \Gamma(k_1, \theta)</math> and <math>X_2 \sim \Gamma(k_2, \theta)</math> then <math>X_2 + X_2 \sim \Gamma(k_1 + k_2, \theta)</math>. | ||
* If <math>X_1 \sim \Gamma(\alpha, \theta)</math> and <math>X_2 \sim \Gamma(\beta, \theta)</math>, then <math>\frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)</math>. | |||
===T-distribution=== | |||
* Ratio of standard normal and squared-root of Chi-sq distribution yields T-distribution. | |||
** If <math>Z \sim N(0,1)</math> and <math> V \sim \Chi^2(v)</math> then <math>\frac{Z}{\sqrt{V/v}} \sim \text{t-dist}(v)</math> | |||
===Chi-Sq Distribution=== | |||
* The ratio of two normalized Chi-sq is an F-distributions | |||
** If <math>X \sim \chi^2_{d1}</math> and <math>Y \sim \chi^2_{d2}</math> then <math>\frac{X/d1}{Y/d2} \sim F(d1,d2)</math> | |||
* If <math>Z_1,...,Z_k \sim N(0,1)</math> then <math>Z_1^2 + ... + Z_k^2 \sim \Chi^2(k)</math> | |||
* If <math>X_i \sim \Chi^2(k_i)</math> then <math>X_1 + ... + X_n \sim \Chi^2(k_1 +...+ k_n)</math> | |||
* <math>\Chi^2(k)</math> is equivalent to <math>\Gamma(k/2, 2)</math> | |||
===F Distribution=== | |||
Too many to list. See [[Wikipedia: F-distribution]]. | |||
Most important are Chi-sq and T distribution: | |||
* If <math>X \sim \chi^2_{d1}</math> and <math>Y \sim \chi^2_{d2}</math> then <math>\frac{X/d1}{Y/d2} \sim F(d1,d2)</math> | |||
* If <math>X \sim t_{(n)}</math> then <math>X^2 \sim F(1, n)</math> and <math>X^{-2} \sim F(n, 1)</math> | |||
==Textbooks== | |||
* [https://smile.amazon.com/dp/032179477X Sheldon Ross' A First Course in Probability] | |||
* [https://smile.amazon.com/dp/0321795431 Hogg and Craig's Mathematical Statistics] | |||
* [https://smile.amazon.com/dp/0534243126 Casella and Burger's Statistical Inference] |