TensorFlow: Difference between revisions

From David's Wiki
Tags: Mobile edit Mobile web edit
Line 8: Line 8:
* Install with pip
* Install with pip


===Install TF1===
===Install TF2===
<pre>
<pre>
pip install tensorflow
pip install tensorflow
</pre>
</pre>
===Install TF2===
===Install TF2===
<pre>
<pre>

Revision as of 18:05, 7 June 2020

TensorFlow is the famous machine learning library by Google

Install

  • Install CUDA and CuDNN
  • Create a conda environment with python 3.7
    • You can also just create a tensorflow environment using conda
    • conda create -n my_env tensorflow
  • Install with pip

Install TF2

pip install tensorflow

Install TF2

pip install tensorflow-gpu==1.15

Usage (TF2)

Here we'll cover usage using TensorFlow 2 which has eager execution.
This is using the Keras API in tensorflow.keras.

Basics

The general pipeline using Keras is:

  • Define a model, typically using tf.keras.Sequential
  • Call model.compile
    • Here you pass in your optimizer, loss function, and metrics.
  • Train your model by calling model.fit
    • Here you pass in your training data, batch size, number of epochs, and training callbacks
    • For more information about callbacks, see Keras custom callbacks.

After training, you can use your model by calling model.evaluate

Custom Models

An alternative way to define a model is by extending the Model class:

  • Write a python class which extends tf.keras.Model
  • Implement a forward pass in the call method


Custom Training Loop

Reference
While you can train using model.compile and model.fit, using your own custom training loop is much more flexable and easier to understand. You can write your own training loop by doing the following:

my_model= keras.Sequential([
    keras.layers.Dense(400, input_shape=400, activation='relu'),
    keras.layers.Dense(400, activation='relu'),
    keras.layers.Dense(400, activation='relu'),
    keras.layers.Dense(400, activation='relu'),
    keras.layers.Dense(400, activation='relu'),
    keras.layers.Dense(2)
])

optimizer = keras.optimizers.SGD(learning_rate=1e-3)

training_loss = []
validation_loss = []
for epoch in range(100):
    print('Start of epoch %d' % (epoch,))
    for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            guess = my_model(x_batch_train)
            loss_value = my_custom_loss(y_batch_train, guess)

        # Use the gradient tape to automatically retrieve
        # the gradients of the trainable variables with respect to the loss.
        grads = tape.gradient(loss_value, my_model.trainable_weights)

        # Run one step of gradient descent by updating
        # the value of the variables to minimize the loss.
        optimizer.apply_gradients(zip(grads, my_model.trainable_weights))

        # Log every 200 batches.
        if step % 200 == 0:
            print('Training loss at step %s: %s' % (step, float(loss_value)))
        training_loss.append(loss_value)
        guess_validation = model(x_validation)
        validation_loss.append(my_custom_loss(y_validation, guess_validation))

Save and Load Models

Reference

Usage (TF1)

Estimators

First Contact w/ TF Estimator (TDS)

Training Statistics

Reference
You can extract the training loss from the events file in tensorflow.