Numerical Optimization

From David's Wiki
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Numerical Optimization


Convergence Rates

Wikipedia
The rate of convergence is \(\displaystyle \lim_{k \rightarrow \infty} \frac{|x_{k+1}-x^*|}{|x_{k}-x^*|^q}=L\)
Iterative methods have the following convergence rates:

  • If Q=1 and L=1 we have sublinear convergence.
  • If Q=1 and \(\displaystyle L\in(0,1)\) we have linear convergence.
  • If Q=1 and \(\displaystyle L=0\) we have superlinear convergence.
  • If Q=2 and \(\displaystyle L \leq \infty\) we have quadratic convergence.

Line Search Methods

Basic idea:

  • For each iteration
    • Find a direction \(\displaystyle p\).
    • Then find a step length \(\displaystyle \alpha\) which decreases \(\displaystyle f\).
    • Take a step \(\displaystyle \alpha p\).

Trust Region Methods

Basic idea:

  • For each iteration
    • Assume a quadratic model of your objective function near a point.
    • Find a region where you trust your model accurately represents your objective function.
    • Take a step.


Variables:

  • \(\displaystyle f\) is your objective function.
  • \(\displaystyle m_k\) is your quadratic model at iteration k.
  • \(\displaystyle x_k\) is your point at iteration k.

Your model is \(\displaystyle m_k(p) = f_k + g_k^T p + \frac{1}{2}p^T B_k p\) where \(\displaystyle g_k = \nabla f(x_k)\) and \(\displaystyle B_k\) is a symmetric matrix.
At each iteration, you solve a constrained optimization subproblem to find the best step \(\displaystyle p\).
\(\displaystyle \min_{p \in \mathbb{R}^n} m_k(p)\) such that \(\displaystyle \Vert p \Vert \lt \Delta_k \).

Cauchy Point Algorithms

The Cauchy point \(\displaystyle p_k^c = \tau_k p_k^s\)
where \(\displaystyle p_k^s\) minimizes the linear model in the trust region
\(\displaystyle p_k^s = \operatorname{argmin}_{p \in \mathbb{R}^n} f_k + g_k^Tp \) s.t. \(\displaystyle \Vert p \Vert \leq \Delta_k \)
and \(\displaystyle \tau_k\) minimizes our quadratic model along the line \(\displaystyle p_k^s\):
\(\displaystyle \tau_k = \operatorname{argmin}_{\tau \geq 0} m_k(\tau p_k^s)\) s.t. \(\displaystyle \Vert \tau p_k^s \Vert \leq \Delta_k \)
This can be written explicitly as \(\displaystyle p_k^c = - \tau_k \frac{\Delta_k}{\Vert g_K \Vert} g_k\) where \(\displaystyle \tau_k = \begin{cases} 1 & \text{if }g_k^T B_k g_k \leq 0;\\ \min(\Vert g_k \Vert ^3/(\Delta_k g_k^T B_k g_k), 1) & \text{otherwise} \end{cases} \)

Conjugate Gradient Methods

Painless Conjugate Gradient
The goal is to solve \(\displaystyle Ax=b\) or equivalently \(\displaystyle \min \phi(x)\) where \(\displaystyle \phi(x)=(1/2)x^T A x - b^Tx\).
The practical CG algorithm will converge in at most \(\displaystyle n\) steps.

Definitions

Vectors \(\displaystyle \{p_i\}\) are conjugate w.r.t SPD matrix \(\displaystyle A\) if \(\displaystyle p_i^T A p_j = 0\) for \(\displaystyle i \neq j\)

Notes
  • \(\displaystyle \{p_i\}\) are linearly independent

Algorithms

Basic idea:

  • Find a conjugate direction \(\displaystyle p_k\)
  • Take the step size \(\displaystyle \alpha_k\) which minimizes along \(\displaystyle \phi(x)\)

Practical CG method:

Code

Below is code for the practical CG method.

x = x0;
r = A*x - b;
p = -r;
k = 1;
while(norm(r) > tole && k < size(x,2))
   Ap = A*p;
   alpha = (r'*r)/(p'*Ap);
   x = x + alpha * p;
   rn = r + alpha * Ap;
   beta = (rn'*rn)/(r'*r);
   p = -rn + beta * p;
   r = rn;
   k = k+1;
end

Theorems

Given a set of conjugate directions \(\displaystyle \{p_0,...,p_{n-1}\}\) we can generate a sequence of \(\displaystyle x_k\) with
\(\displaystyle x_{k+1}=x_k + \alpha_k p_k\) where \(\displaystyle \alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k}\) minimizes \(\displaystyle \phi(x)\)

Theorem
For an \(\displaystyle x_0\), the sequence \(\displaystyle x_k\) converges to the solution \(\displaystyle x^*\) in at most n steps.
Theorem
At step k, the residual \(\displaystyle r_k\) is orthogonal to \(\displaystyle \{p_0,...p_{k-1}\}\) and the current iteration \(\displaystyle x_{k}\)
minimizes \(\displaystyle \phi(x)\) over the set \(\displaystyle \{x_0 + span(p_0,...,p_{k-1})\}\)

Convergence Rate

The convergence rate can be estimated by:
\(\displaystyle \min_{P_k} \max_{1 \leq i \leq k} [1 + \lambda_i P_k(\lambda_i)]^2\)

Resources