Numerical Analysis

From David's Wiki
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Numerical Analysis


Orthogonal Polynomials

Hermite Polynomials

Legendre Polynomials

Laguerre Polynomials

Nonlinear Equations

Continuation/Homotopy Methods

Reference Numerical Optimization by Nocedal and Wright (2006)
Also known as zero-path following.
If you want to solve \(\displaystyle r(x)=0\) when \(\displaystyle r(x)\) is difficult (i.e. has non-singular Jacobian) then you can use this method.
Define the Homotopy map
\(\displaystyle H(x, \lambda)=\lambda r(x) + (1-\lambda)(x-a)\)

Numerical Differentiation

See finite differencing

Numerical Integration

See Quadrature rules

Function Approximation

Radial Basis Functions (RBF)

See A Practical Guide to Radial Basis Functions.
Radial Basis Functions are functions which are only dependent on the radius of the input: \(\displaystyle \mathbf{\phi}(\mathbf{x}) = \phi(\Vert x\Vert)\)