Measure-theoretic Probability Theory

\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Graduate-level Probability Theory

Probability Measures

Definitions

Field

A class \(\displaystyle \mathcal{F}\) of subsets of \(\displaystyle \Sigma\) is called a field if it contains \(\displaystyle \Sigma\) and is closed under complements and finite unions.

  • \(\displaystyle \Sigma \in F\)
  • \(\displaystyle A \in F \implies A^c \in F\)
  • \(\displaystyle A, B \in F \implies A \cup B \in F\)
Sigma-field
A class F is called a \(\displaystyle \sigma\)-field if it is also closed under countable unions
  • \(\displaystyle A_1, A_2, ... \in F \implies A_1 \cup A_2 \cup ... \in F\)
Probability measure space

Given a sigma field F on space \(\displaystyle \Sigma\) and probability measure P,
\(\displaystyle (\Sigma, F, P)\) is a probability measure space.


Textbooks

  • [Probability and Measure by Patrick Billingsley]